Saturday, July 23, 2016

SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM

  1. PREPARED BY, UAGES LLC SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM

  1. ABSTRACT Renewable energy sources i.e., energy generated from solar, wind, biomass, hydro-power, geothermal and ocean resources are considered as a technological option for generating clean energy. But the energy generated from solar and wind is much less than the production by fossil fuels, however, electricity generation by utilizing PV cells and wind turbine increased rapidly in recent years.


  1. INTRODUCTION We all know that the world is facing a major threat of fast depletion of the fossil fuel reserves. Most of the present energy demand is met by fossil and nuclear power plants. A small part is met by renewable energy technologies such as the wind, solar, biomass, geothermal etc. There will soon be a time when we will face a severe fuel shortage. As per the law of conservation of energy, “Energy can neither be created, nor be destroyed, but it can only be converted from one form to another”. Most of the research now is about how to conserve the energy and how to utilize the energy in a better way. Research has also been into the development of reliable and robust systems to harness energy from nonconventional energy resources. Among them, the wind and solar power sources have experienced a remarkably rapid growth in the past 10 years. Both are pollution free sources of abundant power.

  1. BLOCK DIAGRAM


  1.  IMPLEMENTATION OF HYBRID ENERGY SYSTEM Intermittent energy resources and energy resources unbalance are the most important reason to install a hybrid energy supply system. The Solar PV wind hybrid system suits to conditions where sunlight and wind has seasonal shifts. As the wind does not blow throughout the day and the sun does not shine for the entire day, using a single source will not be a suitable choice. A hybrid arrangement of combining the power harnessed from both the wind and the sun and stored in a battery can be a much more reliable and realistic power source. The load can still be powered using the stored energy in the batteries even when there is no sun or wind.

  1. SYSTEM COMPONENTS 1.Photovoltaic solar power 2. Wind Power 3. Batteries 4. Inverter 5. Microcontroller


  1.  PHOTOVOLTAIC SOLAR POWER Solar panels are the medium to convert solar energy into the electrical energy. Solar panels can convert the energy directly or heat the water with the induced energy. PV (Photovoltaic) cells are made up from semiconductor structures as in the computer technologies. Sun rays are absorbed with this material and electrons are emitted from the atoms. This release activates a current. Photovoltaic is known as the process between radiation absorbed and the electricity induced. Solar power is converted into the electric power by a common principle called photo electric effect. The solar cell array or panel consists of an appropriate number of solar cell modules connected in series or parallel based on the required current and voltage.

  1. WIND POWER The wind energy is a renewable source of energy. Wind turbines are used to convert the wind power into electric power. Electric generator inside the turbine converts the mechanical power into the electric power. Wind turbine systems are available ranging from 50W to 3- 4 MW. The energy production by wind turbines depends on the wind velocity acting on the turbine. Wind power is able to feed both energy production and demand in the rural areas. It is used to run a windmill which in turn drives a wind generator or wind turbine to

  1. BATTERIES The batteries in the system provide to store the electricity that is generated from the wind or the solar power. Any required capacity can be obtained by serial or parallel connections of the batteries. The battery that provides the most advantageous operation in the solar and wind power systems are maintenance free dry type and utilizes the special electrolytes. These batteries provide a perfect performance for long discharges.

  1. INVERTER Energy stored in the battery is drawn by electrical loads through the inverter, which converts DC power into AC power. The inverter has in-built protection for Short-Circuit, Reverse Polarity, Low Battery Voltage and Over Load.

  1. MICROCONTROLLER The microcontroller compares the input of both Power system and gives the signal to the particular relay and charges the DC Battery. The DC voltage is converted into AC Supply by Inverter Circuit. The MOSFET (IRF 540) is connected to the Secondary of the center tapped transformer. By triggering of MOSFET alternatively, the current flow in the Primary winding is also alternative in nature and we get the AC supply in the primary winding of the transformer.

  1. CONCLUSION In the present work a Solar PV Wind Hybrid Energy System was implemented. A portion of the energy requirement for a private house, farm house, a small company, an educational institution or an apartment house depending on the need at the site where used has been supplied with the electricity generated from the wind and solar power. It reduces the dependence on one single source and has increased the reliability. Hence we could improve the efficiency of the system as compared with their individual mode of generation.